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LECTURE 28: SIMPLE LINEAR REGRESSION I 
 

I. From Correlation to Regression 
a. Recall earlier in the semester when we discussed two basic types of 

correlation (positive and negative). 
b. While it’s usually clear from a scatter plot if two variables are 

correlated (and in which direction they are correlated), we often want 
more than that. In a world of cost-benefit analysis, correlation is not 
enough. The level of influence is needed as well. 

c. This is why we do regressions: they let us know how much one 
variable influences another. 

i. These the best estimate, an estimate because there will always 
be some things we cannot predict. 

d. It is thus important to remember that when you construct a regression, 
you are making a causal claim. You are claiming one thing (x) 
causes another thing (y). If x increases, y will change. Y cannot 
change without x changing; y cannot change independently. 

i. This is why we call y a dependent variable (it depends on x), 
and x an independent variable (changes to it happen 
independent of the model). 

II. Best Linear Unbiased Estimator 
a. Least Squares Regression—line which minimizes the sum of squared 

deviations between the constructed line and the actual data points. 
i. This is also known as a line of best fit, or the Best Linear 

Unbiased Estimator (BLUE). It is also referred to as Ordinary 
Least Squares (OLS). 

ii. Here, we’re determining the 
line:  

 
HEIGHTi = β0 + β1*AGEi + εi 

 
The ε is the residual, the 
distance between what’s 
predicted and what’s 
observed. Sometimes it’s 
called the error term but 
that’s a bit deceiving. It’s not 



suggesting anyone did anything wrong. Still, many sources 
(including your book) refer to it as error so I will use that here 
to avoid confusion. 

iii. This line is determined by minimizing the sum of the squared 
vertical distance between the line and a data point. This is built 
to minimize this value (Sum of Squares Error): 
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1. Where yi-hat is the estimated value based on the 

regression line; 
2. yi is an observation; and 
3. n is the sample size. 

iv. Note this line is not a perfect fit. That’s because other factors 
influence height besides age. What others factors could play a 
role in height? 

b. β1 is the slope of the line. It tells us how much age matters to height. 
Suppose the line is HEIGHTi = 80 + 5.6 AGEi + εi.  

i. We can estimate that someone who is 8 years old is probably 80 
+ 5.6(8) = 124.8 cm tall. For every year someone ages, they get 
5.6 cm taller. 

III. Excel 
a. The calculation for the BLUE line is really time-consuming and 

practically impossible for humans to do if you have a lot of 
observations. So we turn to computers. 

b. Microsoft Excel can do this well so let’s focus on understanding 
Excel’s output for a regression. Let’s try this out on something we 
discussed earlier: professor ratings on Rate My Professor. 

c.  Suppose we want to tell a story that an easy professor will led a 
student to rate that professor well on overall teaching. (Perhaps, 
because the professor is easy, students think they’ve learned a lot and 
thus rate the professor as quite skilled in pedagogy.) 

i. Thus our causal claim: Easiness causes Quality. 
 

QUALITYi = β0 + β1*EASINESSi + εi 
 



ii. When I run this regression for my 211 observations, Excel 
outputs the following results (it outputs more than this, but let’s 
start with this). 

 

 
 

d. For each variable in the regression (and it’s possible to have many, 
which we will discuss later), Excel will tell you the following: 

i. Coefficient—this is the beta-value for the variable; the slope. 
ii. Standard Error—this is the dispersion of the coefficients. If 

you draw multiple unbiased samples, this gives an idea of how 
much the coefficients would change. 

iii. t-statistic—ratio of the estimated coefficient to the standard 
error of the estimated coefficient (coefficient divided by error). 

iv. p-value—tells you the threshold of significance you achieve for 
a particular t-statistic. (Remember critical t values changes 
based on degrees of freedom.) If the p-value is below 0.05, it’s 
significant to the 5% (95% confidence) level. If below 0.01, it’s 
significant to the 1% level, etc. It’s basically the α. 

v. Confidence interval—describes the range that the true value of 
the parameter could fall with a certain level of certainty (usually 
95%). It outputs this result twice; I have no idea why. 

e. The intercept is β0; it’s not really a variable and the t-stat other 
information doesn’t matter too much. But the coefficient does. That 
number—1.03620217—is β0. Our estimated line is thus: 

 
QUALITYi = 1.036 + 0.862*EASINESSi + εi 

 
i. Note as well this result is statistically significant. The t-stat is 

huge and p is functionally zero. 
f. Increasing EASINESS by one point increases QUALITY by 0.862. 
g. A professor with an EASINESS of 3 has a quality of about 3.622. 

i. If the professor is actually above or below that predicted value, 
you can infer that there is something special (good or bad) 
about his or her teaching. 

 
 
 
 



h. Causation matters! 
i. Here is the graph with EASINESS causing QUALITY: 

 
ii. Here is QUALITY causing EASINESS: 

 
iii. Because the regression is minimizing a vertical distance of a 

completely different variable, we get a totally different line. 
iv. The professor with a QUALITY of 2.4 and EASINESS of 1.6 is 

right on the predicted line in the first graph. But reversing the 
causation moves that professor below the line. 


