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LECTURE 18: MULTIVARIABLE REGRESSIONS II 
 

I. Truck Loading data 

a. Open Data Set 6; you’ll see hypothetical data concerning different 

shipments. 

b. How long does it take to load a truck? It makes sense to argue that the 

more pallets that have to be loaded, the longer it’ll take. It also makes 

sense to argue that the heavier the shipment, the more time it takes. A 

heavier shipment is harder to move around. I thus used both pallets and 

weight to predict the time, in minutes, to load the truck: 

 

 
 

i. That’s odd—neither variable seems to matter. What’s going on? 

II. Multicollinearity 

a. If one or more pairs of our independent variables are highly correlated, 

we have multicollinearity, which violates one our regression 

assumptions. 

i. Multicollinearity doesn’t require perfect correlation (if there’s 

perfect correlation, Excel will drop one of the variables). All 

that’s required is that it’s “high.”1 For purposes of simplicity, 

we’ll say that if the absolute value of the correlation coefficient 

is greater than 0.8, there’s multicollinearity.  

ii. In this case, we clearly have multicollinearity between pallets 

and weight, as shipments with more pallets will naturally be 

heavier shipments. The correlation coefficient between pallets 

and weight is 0.925. 

b. Multicollinearity is a problem because the regression will try to get two 

variables to do the same job. It can easily render both variables 

statistically insignificant because you split the explanatory power of 

one variable into two and you can’t tell which variable’s doing the 

 
1 A more technical way to do this is Variance Inflation Factors (VIFs). This technique is beyond the scope of this 

course. 



work. Is this shipment taking a long time to load because it’s heavy, or 

because there are a lot of pallets to manage? 

c. Imagine you’re testing cupcake recipes with customers rating different 

types. Some of your recipes have lots of sugar and butter (type A), some 

have a moderate amount of each (type B), some have only a little of 

each (type C). 

i. The type A cupcakes will certainly be most liked, followed by 

type B, and then by type C.  

ii. But are the type A’s liked because of the sugar or because of the 

butter? How important is each one? Can you lose some sugar and 

get the same level of enjoyment? You don’t know because you 

have multicollinearity! 

iii. You would need cupcakes with low amounts of sugar but lots of 

butter and vice versa. You need to reduce the correlation between 

the two explanatory variables. 

d. The easiest way to correct for multicollinearity is to drop one the 

offending independent variables (it takes two variables to have 

multicollinearity). 

i. In our shipment example, let’s drop weight and only use pallets.  

 

 
ii. Pallets is now statistically significant. 

e. Side note: take a look at the R2 and adjusted R2 for each regression. 

 

 Pallets only Pallets and Weight 

R2 0.567 0.576 

adjusted R2 0.556 0.554 

 

i.  While R2 is higher when you have both variables (no surprise 

there), adjusted R2 makes it clear that the second variable didn’t 

help—adjusted R2 is lower. 

f. Didn’t we have multicollinearity with the housing data because larger 

houses tend to be located far away? No—we had a sufficient number of 

observations that didn’t follow that pattern to isolate the effect of each 

variable. The correlation coefficient between size and distance was only 

0.258, well away from our 0.8 threshold. 


