LECTURE 17: MULTIVARIABLE REGRESSIONS I

- I. What Determines a House's Price?
 - a. Open **Data Set 5** to help us answer this question. You'll see pricing data for homes based on when they were built, how big each home is, how far it is from the city center, and how many days it was on the market before being sold.
 - i. I don't remember where I got this data from. I'm pretty confident it's real but I doubt it's for our area.
 - b. Suppose you're researching how home prices change as you get closer to a city's downtown area. You'd suspect that homes should get cheaper as you go further from the city.
 - c. Here's a regression output (n=100) with miles from city center causing housing prices:

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	ower 95.09	lpper 95.0%
Intercept	508457.7719	57163.32439	8.894825	3.02137E-14	395019.02	621896.5288	395019	621896.5
miles	-5517.997542	11504.88918	-0.47962	0.632564886	-28349.08	17313.08059	-28349.1	17313.08

- d. While the coefficient is negative (as expected: more miles means a lower price) the result is *not statistically significant*. Location, location, location...doesn't matter?
- e. That can't be right—and it's not. The problem with this analysis is as homes get farther out, they get bigger.
 - i. We asked the question, "If you buy a home farther from the city center, what happens to the price?"
 - ii. We need to ask: "If you buy an *identical* home farther from the city center, what happens to the price?"
- f. While it's hard to get data so we can compare "identical" homes, we can get data on one of the big variables here: size. Both size (in square feet) and distance from city center (in miles) matter for housing prices. So we turn to a multivariate regression.
- g. Excluding an important variable can distort the regression analysis, resulting in *omitted variable bias*. It's when a variable that's correlated with the dependent variable and at least one independent variable is not included in the regression.

- i. In our example, size was correlated both distance and price. Without size, we got a distorted understanding of what was going on. We were missing an important "control."
- II. Basics
 - a. A multivariate regression has more than one explanatory variable.

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \dots + \varepsilon_i$$

- b. You want to do a multiple regression because you think multiple variables matter.
 - i. <u>Example</u>: Life expectancy depends on both diet and exercise.
 - ii. <u>Example</u>: Sales depends on price, the unemployment rate, advertising, and so on.
- c. When you interpret a particular beta, it is still the change in the dependent variable for every unit change in the corresponding explanatory variable, but now it also *holds all other explanatory variables constant*.
- d. To do a multivariant regression in Excel, you need to draw a continuous box around multiple X variables for the Input X Range, as so:

Regression		?	×
Input Input <u>Y</u> Range: Input <u>X</u> Range: ✓ Labels CC ☐ Con <u>f</u> idence Level: 95	SAS1:SAS101	O Can <u>H</u> e	icel
Output options	SGS1 SGS1 Residual Plots Line Fit Plots		

i. Note this means that all your X variables have to be next to each other. Recall that you can move columns of data by right-clicking the column letter you wish to move, selecting Cut, then right clicking the column letter you wish to move the column to and selecting Insert Cut Cells. Recall that Excel will always insert to the <u>left</u> of whatever you've selected.

e. Here's the bottom part of the housing regression results, now with size and location predicting price (remember when I suggested you use labels? This is why):

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	ower 95.09	Ipper 95.0%
Intercept	78.70913492	82608.5323	0.000953	0.999241735	-163876.4	164033.7786	-163876	164033.8
sqft	236.9646693	32.00587304	7.403787	4.84964E-11	173.44187	300.4874676	173.4419	300.4875
miles	-23792.47937	9567.375458	-2.48683	0.014596448	-42781.07	-4803.887471	-42781.1	-4803.89

- i. Now distance (and size!) are statistically significant (both p-values are less than 0.05).
- ii. Our estimated line is:

PRICE = 78.7 + 237 * (SQFT) + -23,792 * (MILES)

- iii. For every additional square foot a house has the price increases by \$236.96, controlling for distance from city center.
- iv. For every additional mile the house is from the city center the price decreases by \$23,792.48, controlling for size.
- III. Preparing Your Data
 - a. Excel requires that all explanatory variables for a regression are next to each other. Suppose, for example, I'm interested in how ageof1st marriage, population density, and median age affect the murder rate.
 - i. The easiest way to do this is to right click the column with the variable you're interested in, select "Cut", right click the column of another variable you're interested in, and select "Insert Cut Cells." Like this:

	Calil	_	11 • A A		, 🧳	Outline	All *	B 7	i • 11 • A ∧ T ≡ □□ • ③ •		× .	Text to R Columns Du	p dvanced	Column	Remove is Duplicates 1			lysis * *	p Ungrou T
_	0	18		<u>A</u> - *∷ ⇒.8	_		erper10	d.					_	-					
		Cut	A1	A.I.	^K	AL	F		Cuţ		J	K		G	Н		J	K	L
tspe	ir 👘	Copy			anag	outofpock p	e mploy	L 🔓 🛛	Copy		derp	agland	a loy une	employ	-	medianag			-
547	(9)	Paste			6.49	77.92		2	Paste		3732	58.1237			17.8397	16.49	37.582	3.83732	58.12
261	100				.532	57.909			Paste <u>S</u> pecial		3267	39.3066			23.3265	28.532	108.202	7.3267	39.30(
599			Special		.015	23.3662			insert Cut Cells		8921	17.3029			29.6	24.015	13.794	4.38921	17.30
		Insert							Delete			25					315.472		1
		Delet				21.0925			Clear Contents		2651	38,2979					170.459	0.72651	38.29
391			Contents		.718	18.5		e 1	Format Cells		2062	46.194				16,718	13.329	48.2062	46.19
	2	-	st Cells			10.0			Column Width								150.198		
482		-	nn Width			28.362			Hide		8496	29,5455					188.991	7,48496	29,54
387		Hide			9.12	24.3474			Unhide		5377				23.264	29.12	13.93	5.25377	49.11(
297		Unhio 984	5.25298	40.254	31.142	59.8532			22.986	102.85					22.986	31.142	102.85	2.35225	56.35!
297	5.23	964				59.6552			22.960		2.55225				22.900			2.53225	
			25.4	12.513	36.417					561.311		11.1111				36.417	561.311		11.11
508	3.99	286	63.0269	-32.219	36.553	18.216	10.5		5.3 28.9313	2.635	0.77998	57.9448	0.5	5.3	28.9313	36.553	2.635	0.77998	57.94
547	2.03	8918	58.0308	48.231	39.953	16.3782			28.9376	98.169	0.80939	39.5755			28.9376	39.953	98.169	0.80939	39.57
397	16.1	394	8.21798	40.352	27.08	63.6192			23.8863	97.609	2.69433	57.5611			23.8863	27.08	97.609	2.69433	57.56:
152	5.05	683	25	24.7	28.054	19.5109			27.1928	23.454	17.137	1.2987			27.1928	28.054	23.454	17.137	1.29
271	11.1	306	21.3037	26.024	27.617	23.182			25.9046	1048.38	0.61917	10.8108			25.9046	27.617	1048.38	0.61917	10.81(
458	5.07	472	0.24164	23.88	22.544	62.6047			18.67	1063.36	8.7582	71.5295			18.67	22.544	1063.36	8.7582	71.529
												I							

ii. Now all my explanatory variables are next to each other.

b. Excel requires that all variables have no blank observations. If you get this error message:

It means you are trying to run a regression using variables with missing values.

- i. Normally, a program would just ignore those observations. But Excel is kind of dumb. You have to delete observations that don't have values for every variable. Let me first show you a quick way to do that.
- c. The Sort function is in the Data tab. Highlight the whole Excel sheet (by clicking in the upper right-hand corner of sheet) and select Data.

d. You'll get something that looks like this:

- i. Make sure to select "My data has headers." It'll make this a lot easier. Also make sure you selected all the variables.
 - 1. Sometimes students will only select the variable they wish to sort. When they do that, they render the data set worthless because all the data get unpaired from their element. Don't do that—select the whole data set.

e. In the dropdown menu, select ageof1stmarriagefemale. Then press OK.

f. Excel will reorder the data based on that variable. This means all the blank values end up in the same place: at the end. This makes it a lot easier to find and delete all the observations with blank values.

1	country	population	GDP/cap	over15un ur	employ i	unemploy	unemploy	ageof1stn	medianag	popdensit	murderpe	agland	aidgivena	aidrecieve al
173	Sweden	9,041,000	31995	7.8	6.3	21.4	7.6	32.405	40.103	20.149	0.89648	7.8374	0.94	
174	Jamaica	2,651,000	7132					33.2029	25.467	242.715	42.5942	43.121		0.44
175	Martinique	396,000	14627.1					37,2595	36.709	361.279	4.5			
176	American Samoa	185,000	9617.82				_			315.472		25		
177	Andorra	67,000	39002.4							170.459	0.72651	38.2979		
178	Angola	15,941,000	3533						16.718	13.329	48.2062	46.194		1.59
179	Anguilla	12,000	19478.9							150.198				
180	Antigua and Barbuda	81,000	14579							188.991	7.48496	29.5455		0.95
181	Aruba	99,000	26762.7						3 .417	561.311		11.1111		
182	Bermuda	64,000	69916.8							1210.83		20		
183	Bosnia and Herzegovina	3,907,000	6506						37 332	73.857	1.82565	42.2941		4.7
184	British Virgin Islands	22,000	44961.2							145.781				
185	Caribbean								28 033	173.12				
186	Cayman Islands	45,000	48632.3							199.182		8.33333		
187	Channel Islands	149,000							4.05	762.303		36.8421		
188	Congo, Dem. Rep.	57,549,000	330						16 079	25.194	45.129	9.90274		26.35
189	Congo, Rep.	3,999,000	3621						18 943	9.99	23.4758	30.8697		31.69
190	Cook Islands		18482.1							80.864	0.84027			
191	Cuba	11,269,000	7407.24						31,488	100.966	5.78205	62.3544		
192	Djibouti		1964						2 .077	34.696	3.77898	73.3822		9.81
193	Dominica	79,000	8576							89.822	9.84239	30.6667		7.64
194	Equatorial Guinea	504,000	11999						.8.583	21.704	28.2999	11.5508		1.09
195	Faeroe Islands	47,000	39495.7							34.738		2.15827		
196	Falkland Islands (Malvir	3,000	26101.6							0.244				
197	Gibraltar	28.000	40734.2							5119				

- i. *This is an incredibly useful function for your everyday understanding of data.* It makes it easy to, for example, find the largest values or put all observations of the same category next to each other.
- g. Highlight rows (selecting the numbers so you get the whole row) starting in 176 all the way down to 237. Right click and select Delete.

1	country	population	GDP/cap	over15un unemploy unemploy unemploy ageof1stn median	g popdens	it murderpe	agland	aidgivena: aidrecieve al
213	Marshall Islands	62,000	6206		313.3	7 1.74394	77.7778	31.42
14	Mayotte	160,265	9617.82	18.5	9 466.47	9	54.0541	
15	Melanesia			20.21	9 14.55	5		
216	Micronesia, Fed. Sts.	110,000	5508	19.78	4 155.86	0.78562	31.4286	41.54
17	Montserrat	4,000	11579.6		55.17	5		
18	Nauru	14,000	6933.94		481.47	5 12.579		
19	Niue	1,000	5630.64		6.32	3 1.01416		
20	Northern Mariana Islan	81,000	9617.82		172.84	7	6.52174	
	Palau	20,000	13012		43.84	5 0.84483	10.8696	
	libri • 11 • A' A' \$ •		67		1	0		
в	i 🛛 🗏 🗄 + 🏧 + 🐴	3 43 🖂 5,000	2566.03		38.63	9		
24	Saint Kitte and Navie	43,000	13677		188.26	8 11.3276	19.2308	0.64
1.5	Cut	6,000	6859.54		25.40	1		
1		8,000	41590		495.78	7	16.6667	
2		1,000	14202		181.61	3 3.22677	8.69565	2.19
1	Paste Special	8,000	932.962	17.64	5 13.10	1 1.85063	70.7384	
-	Insert	9,000	7234	26.14	3 3.05	1 10.5511	0.46154	2.53
1	Clear Contents	3,000	4059	20.56	6 103.25	3.06892	75.3282	0.28
	Format Cells	7,000	2203	16.73	1 66.66	7 16.2515	25.8911	26.82
1	Row Height	1,000	889.433		101.08	3		
	Hide	6,000	31209.1		70.99	5	1.05263	
1	Unhide	0,000	4978.91		375.46	2 1.92412	33.3333	
33	vietnam	84,238,000	2142	25.57	2 253.47	4.34193	32.4249	3.66
236	Wallis et Futuna	15,000	3612.17		74.5	В		
237	Western Sahara	341,000		24.23	1 1.65	5		

h. Repeat this process for each variable that you care about (including your dependent variable) and you're ready to run the regression.

Dummy variables IV.

- a. A common control is a *dummy variable*—a variable that's either zero (for "no") or one (for "yes"). .
 - variables i. These are binomial: gender (male or female), employment (working or not working), immigration status (legal or illegal).

Company	West?	Midwest?	Northeast?
Red Sun	1	0	0
Yellow Sun	0	0	0
Blue Sun	0	0	1
Green Sun	1	0	0
Orange Sun	0	1	0
Purple Sun	0	0	0
Black Sun	0	0	1
White Sun	0	0	0
Grey Sun	0	1	0

- ii. You can use multiple dummies for a variable
 - with a few categories (White? Black? Asian? Hispanic?). For example, here's hypothetical data where each observation is a U.S. company. The dummy variable is the region of country where the company's headquarters are.
- iii. You typically want to have a number of dummies equal to one minus the number of categories. If the dummy is "Female?" then you know 1=F and 0=M. Adding "Male?" is redundant. Note on the table of the hypothetical firms, there is no dummy variable for the South. That's because if a U.S. firm doesn't have their HQ in any of the other regions, it must have it in the South. That's where Yellow Sun, Purple Sun, and White Sun have their HQs.
- iv. The only time you don't want to have one fewer dummy variables than categories is when the categories aren't mutually exclusive. A firm can't have their HQ in two different regions. But a student can have more than one major, a person can identify as multiple races, a rug can have several different colors in it, etc.
- b. You interpret the variable as you would when there's a single variable: examine the coefficient. Again, you're holding the other variables constant.
- V. More Output from Excel
 - a. Data Set 5 also has our RMP data, but now with a new variable: HOT?
 - b. Rate My Professor once asked students to indicate if the professor is attractive or not (hot or not). I've set this up as a dummy variable: 1 means the professor is rated as "hot" and 0 means the professor is rated as "not hot."

- c. If a professor becomes "hot," is it possible that results in a better quality? We need a plausible causation story (remember: regressions are all about causation). Perhaps students pay more attention and are more likely to attend class if the professor is attractive. That means students learn more and the class is more enjoyable, encouraging students to think the professor is a better educator.
- d. To run a regression with multiple explanatory variables, you just highlight multiple columns for the X range rather than just one column. I so below, highlighting the E and F columns:

Regression		? ×
Input Input <u>Y</u> Range: Input X Range:	\$D\$2:\$D\$213	OK Cancel
	Constant is Zero	Help
Output options	\$1\$3	
Residuals Residuals Standardized Residuals Normal Probability Normal Probability Plots	Residual Plots	

- i. This is why all your dependent variables have to be next to each other: so you can create a continuous box.
- e. Here is the full output:

SUMMARY OUTPUT		1		•	we will foc don't matt			
Regression St	tatistics		•					wen,
Multiple R	0.806814419	expe	ct obser	vations	but it's obv	100 what	that is.	
R Square	0.650949506	 		\wedge				
Adjusted R Square	0.647593251	4		\backslash				
Standard Error	0.518875933							
Observations	211							
ANOVA								
	df	SS	// MS	F	Significance F			
Regression	2	104.435809	52.2179	193.9512	2.88655E-48			
Residual	208	56.00030473	0.269232					
Total	210	160.4361137						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	5.756302906	0.153848027	37.41551	2.51E-94	5.453001574	6.059604238	5.453001574	6.059604238
DIFFICULTY	-0.754138639	0.049301502	-15.2965	6.84E-36	-0.85133333	-0.656943949	-0.85133333	-0.656943949
Hot?	0.552312714	0.086112722	6.413834	9.39E-10	0.382547109	0.722078319	0.382547109	0.722078319

- f. If a professor simply becomes "Hot" (going from a 0 to a 1), his or her rating increases by about 0.55, holding their DIFFICULTY rating constant. Note this is the most a professor could get out of this variable because there're only two values this variable can be.
- VI. Interpretation
 - a. *Explained (Regression) Sum of Squares (ESS)*—the squared vertical difference between the average and the predicted value of the dependent variable. This difference is taken for each observation and then added together.
 - b. *Residual Sum of Squares (RSS)*—The squared vertical difference between the observed value and the predicted value. This difference is taken for each observation and then added together.
 - c. *Total Sum of Squares (TSS)*—ESS + RSS
 - d. R^2 —ESS/TSS, or the percent of deviation that our regression explains. There is no threshold for a "good" R^2 .
 - i. We are explaining 65% of the distance between a rating's observed value and the average rating.
 - ii. R^2 is sometimes also called the "coefficient of determination."
 - e. Adjusted R^2 —The R^2 value adjusted for the number of explanatory variables.
 - i. A weakness of R^2 is that it adding additional explanatory variables causes it to increase, regardless of the quality of explanatory variables. This is a problem because having many explanations for something is the same as having few.
 - ii. Adjusted R² penalizes the researcher for adding explanations, especially if it's large relative to the number of observations. The equation is:

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n - 1}{n - k - 1}$$

Where n is the number of observations and k is the number of explanatory variables, excluding the intercept.

- f. F—The ratio between the explained and unexplained variance. Like R^2 , it's used for evaluating the model as a whole. And like the t distribution, the F distribution is a family of distributions. Significance level depends on degrees of freedom.
 - i. Higher values of F indicate a model with more explanatory power. Because the shape of the F distribution is known (its exact shape changes based on the number of observations and number

of explanatory variables), it is possible to determine critical values.

- g. *Significance F*—this is the p-value for the F stat and uses the same criteria. If the value is very small, the model is quite good.
- VII. Bonus: Understanding ESS and RSS
 - a. Suppose you have sales data on various Chinese restaurants. If you pick a restaurant at random, what do you suppose that restaurant's sales are?
 - b. Your best guess would be average sales. Obviously, your guess probably won't be right but based on how little information you have, there's no better guess.
 - c. Now suppose you know that restaurant you chose has 4 out of 5 stars on Yelp, the popular review site. How do you adjust your expected sales? It should go up, right?
 - d. Regressions are about how you can explain why an observation's value is different from the average (that's why causation is so important).

- e. The green line is the <u>average sales</u>. The blue line is the regression line. Note that we get a much better estimation of sales if we employ something we know that has predictive power (Yelp ratings) than if we just guessed based on the average.
 - i. Indeed, of the five observations, four give us a much better estimate of sales than the average (one is spot on!). Only one observation—the middle one—does using the line rather than the average worsen the guess. And it's not that much worse.

- f. The red line is that observation's contribution to ESS; it's the part of the deviation the regression line can explain.
- g. The purple line is that observation's contribution to RSS; it's the part of the deviation the regression line can't explain.
- h. I write "contribution' in each of these cases because ESS and RSS are the *sum* of squares. It's the result (after squaring it) from all the observations.