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LECTURE 17: MULTIVARIABLE REGRESSIONS I 
 

I. What Determines a House’s Price? 

a. Open Data Set 5 to help us answer this question. You’ll see pricing 

data for homes based on when they were built, how big each home is, 

how far it is from the city center, and how many days it was on the 

market before being sold. 

i. I don’t remember where I got this data from. I’m pretty confident 

it’s real but I doubt it’s for our area. 

b. Suppose you’re researching how home prices change as you get closer 

to a city’s downtown area. You’d suspect that homes should get cheaper 

as you go further from the city. 

c. Here’s a regression output (n=100) with miles from city center causing 

housing prices: 

 

 
 

d. While the coefficient is negative (as expected: more miles means a 

lower price) the result is not statistically significant. Location, location, 

location…doesn’t matter? 

e. That can’t be right—and it’s not. The problem with this analysis is as 

homes get farther out, they get bigger. 

i. We asked the question, “If you buy a home farther from the city 

center, what happens to the price?” 

ii. We need to ask: “If you buy an identical home farther from the 

city center, what happens to the price?” 

f. While it’s hard to get data so we can compare “identical” homes, we 

can get data on one of the big variables here: size. Both size (in square 

feet) and distance from city center (in miles) matter for housing prices. 

So we turn to a multivariate regression. 

g. Excluding an important variable can distort the regression analysis, 

resulting in omitted variable bias. It’s when a variable that’s correlated 

with the dependent variable and at least one independent variable is not 

included in the regression. 



i. In our example, size was correlated both distance and price. 

Without size, we got a distorted understanding of what was going 

on. We were missing an important “control.” 

II. Basics 

a. A multivariate regression has more than one explanatory variable. 

 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 +⋯+ 𝜀𝑖 
 

b. You want to do a multiple regression because you think multiple 

variables matter.  

i. Example: Life expectancy depends on both diet and exercise. 

ii. Example: Sales depends on price, the unemployment rate, 

advertising, and so on. 

c. When you interpret a particular beta, it is still the change in the 

dependent variable for every unit change in the corresponding 

explanatory variable, but now it also holds all other explanatory 

variables constant. 

d. To do a multivariant regression in Excel, you need to draw a continuous 

box around multiple X variables for the Input X Range, as so: 

 

 
 

i. Note this means that all your X variables have to be next to each 

other. Recall that you can move columns of data by right-clicking 

the column letter you wish to move, selecting Cut, then right 

clicking the column letter you wish to move the column to and 

selecting Insert Cut Cells. Recall that Excel will always insert to 

the left of whatever you’ve selected. 



e. Here’s the bottom part of the housing regression results, now with size 

and location predicting price (remember when I suggested you use 

labels? This is why): 

 

 
 

i. Now distance (and size!) are statistically significant (both p-

values are less than 0.05). 

ii. Our estimated line is: 

 

𝑃𝑅𝐼𝐶𝐸 = 78.7 + 237 ∗ (𝑆𝑄𝐹𝑇) + −23,792 ∗ (𝑀𝐼𝐿𝐸𝑆) 
 

iii. For every additional square foot a house has the price increases 

by $236.96, controlling for distance from city center. 

iv. For every additional mile the house is from the city center the 

price decreases by $23,792.48, controlling for size. 

III. Preparing Your Data 

a. Excel requires that all explanatory variables for a regression are next to 

each other. Suppose, for example, I’m interested in how ageof1st 

marriage, population density, and median age affect the murder rate. 

i. The easiest way to do this is to right click the column with the 

variable you’re interested in, select “Cut”, right click the column 

of another variable you’re interested in, and select “Insert Cut 

Cells.” Like this: 

 

 
 

ii. Now all my explanatory variables are next to each other. 



b. Excel requires that all variables have no blank observations. If you get 

this error message: 

 

 
 

It means you are trying to run a regression using variables with missing 

values. 

i. Normally, a program would just ignore those observations. But 

Excel is kind of dumb. You have to delete observations that don’t 

have values for every variable. Let me first show you a quick 

way to do that. 

c. The Sort function is in the Data tab. Highlight the whole Excel sheet 

(by clicking in the upper right-hand corner of sheet) and select Data. 

 

 
 

d. You’ll get something that looks like this: 

 

 
 

i. Make sure to select “My data has headers.” It’ll make this a lot 

easier. Also make sure you selected all the variables. 

1. Sometimes students will only select the variable they wish 

to sort. When they do that, they render the data set 

worthless because all the data get unpaired from their 

element. Don’t do that—select the whole data set. 



e. In the dropdown menu, select ageof1stmarriagefemale. Then press OK. 

 

 
 

f. Excel will reorder the data based on that variable. This means all the 

blank values end up in the same place: at the end. This makes it a lot 

easier to find and delete all the observations with blank values. 

 

 
 

i. This is an incredibly useful function for your everyday 

understanding of data. It makes it easy to, for example, find the 

largest values or put all observations of the same category next 

to each other. 

g. Highlight rows (selecting the numbers so you get the whole row) 

starting in 176 all the way down to 237. Right click and select Delete.  

 

 



 

h. Repeat this process for each variable that you care about (including 

your dependent variable) and you’re ready to run the regression. 

IV. Dummy variables 

a. A common control is a dummy variable—a variable that’s either zero 

(for “no”) or one (for “yes”). 

i. These variables are 

binomial: gender (male 

or female), employment 

(working or not 

working), immigration 

status (legal or illegal).  

ii. You can use multiple 

dummies for a variable 

with a few categories (White? Black? Asian? Hispanic?). For 

example, here’s hypothetical data where each observation is a 

U.S. company. The dummy variable is the region of country 

where the company’s headquarters are. 

iii. You typically want to have a number of dummies equal to one 

minus the number of categories. If the dummy is “Female?” then 

you know 1=F and 0=M. Adding “Male?” is redundant. Note on 

the table of the hypothetical firms, there is no dummy variable 

for the South. That’s because if a U.S. firm doesn’t have their 

HQ in any of the other regions, it must have it in the South. That’s 

where Yellow Sun, Purple Sun, and White Sun have their HQs. 

iv. The only time you don’t want to have one fewer dummy 

variables than categories is when the categories aren’t mutually 

exclusive. A firm can’t have their HQ in two different regions. 

But a student can have more than one major, a person can identify 

as multiple races, a rug can have several different colors in it, etc. 

b. You interpret the variable as you would when there’s a single variable: 

examine the coefficient. Again, you’re holding the other variables 

constant. 

V. More Output from Excel 

a. Data Set 5 also has our RMP data, but now with a new variable: HOT? 

b. Rate My Professor once asked students to indicate if the professor is 

attractive or not (hot or not). I’ve set this up as a dummy variable: 1 

means the professor is rated as “hot” and 0 means the professor is rated 

as “not hot.” 

Company West? Midwest? Northeast? 

Red Sun 1 0 0 

Yellow Sun 0 0 0 

Blue Sun 0 0 1 

Green Sun 1 0 0 

Orange Sun 0 1 0 

Purple Sun 0 0 0 

Black Sun 0 0 1 

White Sun 0 0 0 

Grey Sun 0 1 0 



c. If a professor becomes “hot,” is it possible that results in a better 

quality? We need a plausible causation story (remember: regressions 

are all about causation). Perhaps students pay more attention and are 

more likely to attend class if the professor is attractive. That means 

students learn more and the class is more enjoyable, encouraging 

students to think the professor is a better educator. 

d. To run a regression with multiple explanatory variables, you just 

highlight multiple columns for the X range rather than just one column. 

I so below, highlighting the E and F columns: 

 

 
 

i. This is why all your dependent variables have to be next to each 

other: so you can create a continuous box. 

e. Here is the full output: 

 

 

These are the items we will focus on. The rest we’ve 

already discussed or don’t matter for our purposes. Well, 

expect observations but it’s obvious what that is. 



f. If a professor simply becomes “Hot” (going from a 0 to a 1), his or her 

rating increases by about 0.55, holding their DIFFICULTY rating 

constant. Note this is the most a professor could get out of this variable 

because there’re only two values this variable can be. 

VI. Interpretation 

a. Explained (Regression) Sum of Squares (ESS)—the squared vertical 

difference between the average and the predicted value of the 

dependent variable. This difference is taken for each observation and 

then added together. 

b. Residual Sum of Squares (RSS)—The squared vertical difference 

between the observed value and the predicted value. This difference is 

taken for each observation and then added together. 

c. Total Sum of Squares (TSS)—ESS + RSS  

d. R2—ESS/TSS, or the percent of deviation that our regression explains. 

There is no threshold for a “good” R2. 

i. We are explaining 65% of the distance between a rating’s 

observed value and the average rating. 

ii. R2 is sometimes also called the “coefficient of determination.” 

e. Adjusted R2—The R2 value adjusted for the number of explanatory 

variables.  

i. A weakness of R2 is that it adding additional explanatory 

variables causes it to increase, regardless of the quality of 

explanatory variables. This is a problem because having many 

explanations for something is the same as having few.  

ii. Adjusted R2 penalizes the researcher for adding explanations, 

especially if it’s large relative to the number of observations. The 

equation is: 

 

𝑅𝑎𝑑𝑗
2 = 1 − (1 − 𝑅2)

𝑛 − 1

𝑛 − 𝑘 − 1
 

 

Where n is the number of observations and k is the number of 

explanatory variables, excluding the intercept. 

f. F—The ratio between the explained and unexplained variance. Like R2, 

it’s used for evaluating the model as a whole. And like the t distribution, 

the F distribution is a family of distributions. Significance level 

depends on degrees of freedom. 

i. Higher values of F indicate a model with more explanatory 

power. Because the shape of the F distribution is known (its exact 

shape changes based on the number of observations and number 



of explanatory variables), it is possible to determine critical 

values. 

g. Significance F—this is the p-value for the F stat and uses the same 

criteria. If the value is very small, the model is quite good. 

VII. Bonus: Understanding ESS and RSS 

a. Suppose you have sales data on various Chinese restaurants. If you pick 

a restaurant at random, what do you suppose that restaurant’s sales are? 

b. Your best guess would be average sales. Obviously, your guess 

probably won’t be right but based on how little information you have, 

there’s no better guess. 

c. Now suppose you know that restaurant you chose has 4 out of 5 stars 

on Yelp, the popular review site. How do you adjust your expected 

sales? It should go up, right? 

d. Regressions are about how you can explain why an observation’s value 

is different from the average (that’s why causation is so important).  

 
e. The green line is the average sales. The blue line is the regression line. 

Note that we get a much better estimation of sales if we employ 

something we know that has predictive power (Yelp ratings) than if we 

just guessed based on the average. 

i. Indeed, of the five observations, four give us a much better 

estimate of sales than the average (one is spot on!). Only one 

observation—the middle one—does using the line rather than the 

average worsen the guess. And it’s not that much worse. 

Yelp Rating 

Sales 



 
f. The red line is that observation’s contribution to ESS; it’s the part of 

the deviation the regression line can explain. 

g. The purple line is that observation’s contribution to RSS; it’s the part 

of the deviation the regression line can’t explain. 

h. I write “contribution’ in each of these cases because ESS and RSS are 

the sum of squares. It’s the result (after squaring it) from all the 

observations. 

 

Yelp Rating 

Sales 


