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LECTURE 15: SIMPLE LINEAR REGRESSION I 
 

I. From Correlation to Regression 

a. Recall last class when we discussed two basic types of correlation 

(positive and negative). 

b. While it’s usually clear from a scatter plot if two variables are 

correlated (and in which direction they are correlated), we often want 

more than that. In a world of cost-benefit analysis, correlation is not 

enough. The magnitude is needed as well. 

c. This is why we do regressions: they let us know how much one variable 

influences another. 

i. These are the best estimate, an estimate because there will always 

be some things we cannot predict. At the very least, no sample is 

perfectly precise. 

d. It is thus important to remember that when you construct a regression, 

you are making a causal claim. You are claiming one thing (x) causes 

another thing (y). If x increases, y will change. Y cannot change without 

x changing; y cannot change independently. 

i. This is why we call y a dependent variable (it depends on x), and 

x an independent variable (changes to it happen independent of 

the model). 

ii. We also refer to an independent variable as an explanatory 

variable because it explains the dependent variable. 

e. Be sure that your explanatory variable(s) logically matches with your 

dependent variable. Something that comes up a lot is adjusting for 

population—recall we discussed this at the end of Unit 1. 

II. Basics 

a. Regression involves creating a “best fit” line. Let’s begin with 

something familiar: 

 

Y = mX + b 

 

i. Recall this equation from earlier math, where X is the 

independent variable, Y is the dependent variable, m is the slope, 

and b is the y-intercept. 



ii. As we’ll discuss later in the unit, regression can have more than 

one slope so when it comes to regression, we’re going to change 

the notation and addition order a bit: 

 

Y = β0 + β1*X1 

 

iii. The y-intercept is now first, and we call it β0 (beta zero). 

iv. The slope is now second, and we call it β1 (beta one). 

1. Note that β1 is also called a “coefficient,” or a value that’s 

multiplied by a variable. Excel refers to all betas 

(including the intercept) as “coefficients.” 

v. Note that there’s a subscript 1 next to X. Again, that’s because 

we can have more than one independent variable (and thus more 

than one slope). 

vi. Keep in mind that the mathematical rules for this equation are 

the same for y=mx+b.  

1. If you want to know a value for Y, you insert a value for 

X, multiply by β1, and then add β0. 

2. If you want to know how much Y will change, you multiply 

the change in X (usually 1) by its coefficient. Keeping in 

mind that “Δ” means “change in” and “k” refers to a 

particular β and X pair (e.g. β1 and X1):  

 

𝛥𝑌 = 𝛽𝑘 ∗ (𝛥𝑋𝑘) 
 

3. BURN THIS EQUATION INTO YOUR BRAIN. 

b. At this point, you might wonder where these actual beta values come 

from. They are the result of a series of equations that you don’t have to 

know because nobody finds the best fit line by hand. Excel will do this 

for you and I’ll show you how. But you need to know what defines 

“best fit,” and for that we need to understand the residual. 

c. The residual (ε) is the distance between what’s predicted (according to 

the best fit line) and what’s observed (according to the data).  

i. Every single observation has its own residual—the vertical 

distance between the best fit line and the observation. 

ii. You can think of the residual as the stuff the regression line can’t 

explain. 

iii. Sometimes the residual is called the “error term” but that’s a bit 

deceiving because it implies someone did something wrong. 



Still, many resources refer to it as the error term so I mention that 

here to avoid future confusion. 

d. Minimizing the sum of squared residuals is what defines the line of best 

fit. Hence, this technique is referred to as least squares regression.1 

i. In other words, square each observation’s residual and add them 

together. You’ll get something called Residual Sum of Squares, 

or RSS: 

 

𝑅𝑆𝑆 =∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑛
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1. Where yi is a particular observation; 

2. yi-hat is the estimated value based on the regression line 

(we use the “hat” notation to distinguish between the 

estimated value and the actual value; and 

3. n is the sample size. 

ii. For the line of best fit, RSS is the lowest it can possibly be. The 

RSS for any other line would be higher. 

e. Example—height  

i. Here, we’re determining the line:  

 

HEIGHTi = β0 + β1*AGEi + εi 

 

ii. ε is the residual. 

iii. The subscript, i, refers to a 

particular observation. For 

example, i=1 is the first 

observation, i=2 is the second, 

and so on. Note the order of 

observations doesn’t matter; it 

just for differentiating one 

observation from another. 

1. Note that i repeats for 

both variables. That’s 

because for any 

observation, we know that observation’s height and age. 

 
1 It is also called ordinary least squares, or OLS. 



iv. Note this line is not a perfect fit. That’s because other factors 

influence height besides age such as genetics, diet, and exercise. 

These unmeasured factors are captured in the residual—the stuff 

we can’t explain. 

f. β1 is the slope of the line. It tells us how much age matters to height. 

Recall that this is the entire point of the regression. 

g. Suppose the line is HEIGHTi = 80 + 6*AGEi + εi.  

i. We can estimate that someone who is 8 years old is probably 80 

+ 6*8 = 128 cm tall.  

ii. For every year someone ages, they get 6 cm taller. 

III. Statistical significance 

a. It’s not enough to find the line that minimizes RSS and reference beta 

to determine magnitude because beta might not be statistically 

significant. 

b. In regression, the null hypothesis is that beta equals zero (it is always a 

two-tailed test).  

c. Don’t worry about calculating anything like you had to do last unit—

Excel will find the p-value for each beta (including the intercept, but no 

one really cares about the p-value for the intercept). 

IV. Your First Regression 

a. Open Data Set 4; you’ll find data on Montgomery College professors 

from Rate My Professor. 

i. Like before, this data includes every MC professor with at least 

25 ratings, gathered in July 2014. We have data on their 

department, the number of ratings, the overall quality, and the 

level of difficulty. 

ii. There are 211 observations (professors). 

b. Suppose we want to tell a story that an easy professor will lead a student 

to rate that professor well on overall teaching. (Perhaps, because the 

professor is easy, students think they’ve learned a lot and thus rate the 

professor as quite skilled in pedagogy.) 

i. Thus our causal claim: Difficulty causes Quality.2 

 

QUALITY = β0 + β1*DIFFICULTY 

 

 

 

 
2 Astute observers will notice that I dropped the I subscript and I should technically have a “hat” symbol over 

QUALITY because there’s no residual in the equation. I removed these notational bits to reduce clutter. 



 

 

c. To run a regression in Excel, go to Data 

>>> Data Analysis >>> Regression. 

You’ll get a window that looks like this: 

 

 

 

 

 

 

 

 

 

 

 

 

i. A red letter means this option can 

be ignored for purposes of this 

class. 

d. I filled the box as so: 

 
 

A: Where the range for your dependent 

variable goes. 

B: Where the range for your explanatory 

variable goes. 

C: If you check this box, Excel will assume 

the first row of your data is the label for that 

column. It is useful to use this option, as 

we’ll see soon. 

D: Excel will output the confidence interval 

of your dependent variable’s coefficient, 

defaulting to 95% confidence. Check this 

box to change the confidence level.  

E: Check this box if you want to force the 

intercept (β0) to be zero. You won’t need 

this option for this class. 

F: As before, this how you tell Excel where 

you want the results. I usually select the first 

option and select an out-of-the-way cell. 

G: Excel can give you information on the 

residuals for each observation. 

H: Used to analyze the data to see how it 

deviates from a normal distribution. 

A 

B 
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D 

E 
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H 



e. And got this result: 

 
 

V. Interpretation 

a. For now, focus only on the end of the regression (we’ll take about the 

rest of it later). 

 

 
 

b. For each variable in the regression, Excel will tell you the following: 

i. Coefficient—this is the beta-value for the variable; the slope. 

ii. Standard Error—this is the dispersion of the coefficients. If you 

draw multiple unbiased samples, this gives an idea of how much 

the coefficients would change. 

iii. t-statistic—ratio of the estimated coefficient to the standard error 

of the estimated coefficient (coefficient divided by error). 

iv. p-value—as discussed previously. 

v. Confidence interval—describes the range that the true value of 

the parameter could fall with a certain level of certainty (usually 

95%). It outputs this result twice, the second one for whatever 

you customized Excel to do (e.g. 97% rather than 95%). 

c. The intercept refers to β0; the “coefficient” for the intercept is 6.2112. 

Our estimated line is thus: 

 

QUALITY = 6.2112 - 0.8625*DIFFICULTY 

 



i. Note as well this result is statistically significant. The t-stat is 

huge and p is functionally zero. 

d. Increasing DIFFICULTY by one point decreases QUALITY by 0.8625 

points. 

e. A professor with a DIFFCULTY of 3 is expected to have a QUALITY 

of about 3.624. 

i. If the professor is actually above or below that predicted value, 

you can infer that there is something special (good or bad) about 

his or her teaching. 


