LECTURE 24: MULTIVARIATE REGRESSIONS I

- I. What Determines a House's Price?
 - a. Open Data Set 6 to help us answer this question. You'll see pricing data for homes based on when they were built, how big each home is, how far it is from the city center, and how many days it was on the market before being sold.
 - i. I don't remember where I got this data from. I'm pretty confident it's real but I doubt it's for our area.
 - b. Suppose you're researching how home prices change as you get closer to a city's downtown area. You'd suspect that homes should get cheaper as you go further from the city.
 - c. Here's a regression output (n=100) with miles from city center causing housing prices:

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	ower 95.09	Ipper 95.0%
Intercept	508457.7719	57163.32439	8.894825	3.02137E-14	395019.02	621896.5288	395019	621896.5
miles	-5517.997542	11504.88918	-0.47962	0.632564886	-28349.08	17313.08059	-28349.1	17313.08

- d. While the coefficient is negative (as expected: more miles means a lower price) the result is *not statistically significant*. Location, location, location...doesn't matter?
- e. That can't be right. And it's not. The problem with this analysis is as homes get farther out, they get bigger.
 - i. We asked the question, "If you buy a home farther from the city, what happens to the price?"
 - ii. We need to ask: "If you buy an *identical* home farther from the city, what happens to the price?"
- f. While it's hard to get data so we can compare "identical" homes, we can get data on one of the big variables here: size. Both size (in square feet) and distance from city center (in miles) matter for housing prices. So we turn to a multivariate regression.
- g. Excluding an important variable can distort the regression analysis, resulting in *omitted variable bias*. It's when a variable that's correlated with the dependent variable and at least one independent variable is not included in the regression.

- i. In our example, size was correlated both distance and price. Without size, we got a distorted understanding of what was going on. We were missing an important control.
- II. Basics
 - a. A multivariate regression has more than one explanatory variable.

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \dots + \varepsilon_i$$

- i. Note that the explanatory variables now have a subscript to differentiate them from other explanatory variables.
- b. You want to do a multiple regression because you think multiple variables matter.
 - i. Example: Life expectancy depends on both diet and exercise.
 - ii. <u>Example</u>: Sales depends on price, the unemployment rate, advertising, and so on.
- c. When you interpret a particular beta value, it is now the change in the dependent variable for every unit change in the corresponding explanatory variable, *holding all other explanatory variables constant*.
- d. To do a multivariant regression in Excel, you need to draw a continuous box around multiple X variables for the Input X Range, as so:

Regression	? ×
Input Input <u>Y</u> Range: SA51:SA5101 Input <u>X</u> Range: SC51:SD5101 Labels Constant is <u>Z</u> ero Confidence Level: 95 %	Cancel <u>H</u> elp
Output options §G\$1 Qutput Range: SG\$1 New Worksheet Ply: New Workbook Residuals Residuals Standardized Residuals Line Fit Plots Normal Probability Normal Probability Plots Normal Probability Normal Probability Plots Residual Plots Standardized Residuals	<u>•</u>

i. Note this means that all your X variables have to be next to each other. Recall that you can move columns of data by right-clicking the column letter you wish to move, selecting Cut, then right clicking the column letter you wish to move the column to and selecting Insert Cut Cells. Note Excel will always insert to the <u>left</u> of whatever you've selected.

e. Here's the housing regression, now with size and location predicting price (remember when I suggested you use labels? This is why):

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	ower 95.09	Ipper 95.0%
Intercept	78.70913492	82608.5323	0.000953	0.999241735	-163876.4	164033.7786	-163876	164033.8
sqft	236.9646693	32.00587304	7.403787	4.84964E-11	173.44187	300.4874676	173.4419	300.4875
miles	-23792.47937	9567.375458	-2.48683	0.014596448	-42781.07	-4803.887471	-42781.1	-4803.89

- i. Now distance (and size!) are statistically significant.
- ii. Our estimated line is:

PRICE = 78.7 + 237 * (SQFT) + -23,792 * (MILES)

- iii. For every additional square foot a house has the price increases by \$236.96, holding distance from the city center constant.
- iv. For every additional mile the house is from the city center the price decreases by \$23,792.48, holding size constant.

III. Preparing Your Data

- a. Excel requires that all explanatory variables for a regression are next to each other. Suppose, for example, I'm interested in how ageof1st marriage, population density, and median age affect the murder rate.
 - i. The easiest way to do this is to right click the column with the variable you're interested in, select "Cut", right click the column of another variable you're interested in, and select "Insert Cut Cells." Like this:

IS Duplicate Validation + Ar & * % * % Outline								Refresh 41 Soft Pilter and Columns Dupli Columns Dupli							Remove s Duplicates	re Data Consolidate What-If Group Ungro ites Validation * Analysis * Data Tools				
	B	1 =	E 🖽 🔹 🦄 🔹	A00 .00			erper10	srper10C												
			A 1	Λ1	^K	AL	F	X	Cut	1		J	К		G	Н	1	J	K	L
tspe	ir 🕺	Cut			anag	outofpock	e mploy		Сору			der	elagland	a lo	y unemploy	ageof1stn	medianag	popdensit	murderpe	agland
547	(2)	<u>C</u> opy			6.49	77.92		2	Paste			373	2 58.123	7		17.8397	16.49	37.582	3.83732	58.12
261		Paste	Consist		.532	57.909			Paste 3	Special		326	7 39.306	6		23.3265	28.532	108.202	7.3267	39.30
599		Paste	Sheciai		.015	23.3662		Insert Cut Cells					1 17.302	9		29.6	24.015	13.794	4.38921	17.30
		Inser							Delete				2	5				315.472		
		Delet	e Combondo			21.0925			Clear Co <u>n</u> tents				1 38.297	9				170.459	0.72651	38.29
391		Clear	Contents		.718	18.5		*	Format Cells			206	46.19	4			16.718	13.329	48.2062	46.1
		<u>F</u> orm	at Cells					_	Colum	n Width								150.198		
482		Lide	nn widen			28.362			Hide			849	6 29.545	5				188.991	7.48496	29.54
387		Unbi	de		9.12	24.3474			Unhid	e		537	7 49.110	4		23.264	29.12	13.93	5.25377	49.11
297	3.Z	3984	5.25298	40.254	31.142	59.8532				22.986	102.85	2.3522	5 56.355	3		22.986	31.142	102.85	2.35225	56.35
			25.4	12.513	36.417						561.311		11.111	1			36.417	561.311		11.11
508	3.9	9286	63.0269	-32.219	36.553	18.216	10.5		5.3	28.9313	2.635	0.7799	8 57.944	8).!	5 5.3	28.9313	36.553	2.635	0.77998	57.94
547	2.0	3918	58.0308	48.231	39.953	16.3782				28.9376	98.169	0.8093	9 39.575	5		28.9376	39.953	98.169	0.80939	39.57
397	16.	1394	8.21798	40.352	27.08	63.6192				23.8863	97.609	2.6943	3 57.561	1		23.8863	27.08	97.609	2.69433	57.56
152	5.0	5683	25	24.7	28.054	19.5109				27.1928	23.454	17.13	7 1.298	7		27.1928	28.054	23.454	17.137	1.29
271	11.	1306	21.3037	26.024	27.617	23.182				25.9046	1048.38	0.6191	7 10.810	8		25.9046	27.617	1048.38	0.61917	10.81
458	5.0	7472	0.24164	23.88	22.544	62.6047				18.67	1063.36	8.758	2 71.529	5		18.67	22.544	1063.36	8.7582	71.52

ii. Now all my explanatory variables are next to each other.

b. Excel requires that all variables have no blank observations. If you get this error message:

It means you are trying to run a regression using variables with missing values.

- i. Normally, a program would just ignore those observations.
- ii. But Excel is kind of dumb. You have to delete them. So let me first show you a quick way to do that.
- c. The Sort function is in the Data tab. Highlight the whole Excel sheet (by clicking in the upper right-hand corner of sheet) and select Data.

d. You'll get something that looks like this:

- i. Make sure to select "My data has headers." It'll make this a lot easier.
- e. In the dropdown menu, select ageof1stmarriagefemale. Then press OK.

			010	20
Sort				? ×
Q _A j <u>A</u> dd	Level X Delete Level	Copy Level		My data has <u>h</u> eaders
Column		Sort On	Order	·
Sort by	~	Values	V A to	Ζ 🗸
	country population GDP/cap over 15 Unemploy unemployfemale 25 to 55 unemployfemale 15 to 24 unemployfemale over 15 ageof 15 turnarriage female medianage popdensityperkm2 murderper 100k			OK Cancel

f. Excel will reorder the data based on that variable. This means all the blank values end up in the same place: at the end. This makes it a lot easier to find and delete all the observations with blank values.

1	country	population	GDP/cap	over15un u	inemploy u	nemploy u	nemploy	ageof1stn	medianag	popdensit	murderpe	agland	aidgivena	aidrecieve alc
173	Sweden	9,041,000	31995	7.8	6.3	21.4	7.6	32.405	40.103	20.149	0.89648	7.8374	0.94	
174	Jamaica	2,651,000	7132					33.2029	25.467	242.715	42.5942	43.121		0.44
175	Martinique	396,000	14627.1					33.2695	36.709	361.279	4.5			
176	American Samoa	185,000	9617.82					\frown		315.472		25		
177	Andorra	67,000	39002.4							170.459	0.72651	38.2979		
178	Angola	15,941,000	3533						16.718	13.329	48.2062	46.194		1.59
179	Anguilla	12,000	19478.9							150.198				
180	Antigua and Barbuda	81,000	14579							188.991	7.48496	29.5455		0.95
181	Aruba	99,000	26762.7						86.417	561.311		11.1111		
182	Bermuda	64,000	69916.8							1210.83		20		
183	Bosnia and Herzegovina	3,907,000	6506						7.332	73.857	1.82565	42.2941		4.7
184	British Virgin Islands	22,000	44961.2							145.781				
185	Caribbean								23.033	173.12				
186	Cayman Islands	45,000	48632.3							199.182		8.33333		
187	Channel Islands	149,000							10.05	762.303		36.8421		
188	Congo, Dem. Rep.	57,549,000	330						15.079	25.194	45.129	9.90274		26.35
189	Congo, Rep.	3,999,000	3621						18.943	9.99	23.4758	30.8697		31.69
190	Cook Islands		18482.1							80.864	0.84027			
191	Cuba	11,269,000	7407.24						5.488	100.966	5.78205	62.3544		
192	Djibouti		1964						20.077	34.696	3.77898	73.3822		9.81
193	Dominica	79,000	8576							89.822	9.84239	30.6667		7.64
194	Equatorial Guinea	504,000	11999						18.583	21.704	28.2999	11.5508		1.09
195	Faeroe Islands	47,000	39495.7							34.738		2.15827		
196	Falkland Islands (Malvir	3,000	26101.6							0.244				
197	Gibraltar	28,000	40734.2							5119				

- i. *This is an incredibly useful function for your everyday understanding of data.* It makes it easy to, for example, find the largest values or put all observations of the same category next to each other.
- ii. Remember when we used RMP data and I had you analyze ratings for different disciplines? I got all the disciplines next to each other using the Sort function.
- iii. You can also add "levels" (see window on the previous page). This will tell Excel to sort within categories. For example, I could have it sort by discipline and then sort by number of ratings. Within each discipline, the professor with the most (or, if I choose, fewest) ratings would be listed first.
- g. Highlight rows starting in 176 all the way down to 237. Right click and select Delete.

1	country	population	GDP/cap	over15un	unemploy u	nemploy une	mploy	ageof1stn	medianag	popdensit	murderpe	agland	aidgivena	aidrecieve al
213	Marshall Islands	62,000	6206							313.37	1.74394	77.7778		31.42
214	Mayotte	160,265	9617.82						18.549	466.479		54.0541		
215	Melanesia								20.219	14.556				
216	Micronesia, Fed. Sts.	110,000	5508						19.784	155.862	0.78562	31.4286		41.54
217	Montserrat	4,000	11579.6							55.176				
218	Nauru	14,000	6933.94							481.476	12.579			
219	Niue	1,000	5630.64							6.323	1.01416			
220	Northern Mariana Islan	81,000	9617.82							172.847		6.52174		
221	Palau	20,000	13012							43.845	0.84483	10.8696		
21 Ca	alibri • 11 • A A * *	% , 🚿	67							10				
21	β Z ≣ ⊞ * <mark>≫</mark> * <u>Α</u> * %	\$ * \$ 🖼 5,000	2566.03							38.639				
224	Saint Kitte and Nevie	43,000	13677							188.268	11.3276	19.2308		0.64
21	6 Cu <u>r</u>	6,000	6859.54							25.401				
21	Barte	8,000	41590							495.787		16.6667		
21	Paste Special	1,000	14202							181.613	3.22677	8.69565		2.19
22	Insert	8,000	932.962						17.645	13.101	1.85063	70.7384		
21	Delete	9,000	7234						26.143	3.051	10.5511	0.46154		2.53
23	Clear Contents	3,000	4059						20.566	103.259	3.06892	75.3282		0.28
23	Format Cells	7,000	2203						16.731	66.667	16.2515	25.8911		26.82
23	Row Height	1,000	889.433							101.083				
23	Hide	6,000	31209.1							70.995		1.05263		
23	Unhide	0,000	4978.91							375.462	1.92412	33.3333		
235	vietnam	84,238,000	2142						25.572	253.473	4.34193	32.4249		3.66
236	Wallis et Futuna	15,000	3612.17							74.58				
237	Western Sahara	341,000							24.221	1.656				
238														

h. Repeat this process for each variable that you care about (including your dependent variable) and you're ready to run the regression.